Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

The protein purity is generally checked using SDS-PAGE, where densitometry could be used to quantify the protein bands. In literature, few studies have been reported using image analysis for the quantification of protein in SDS-PAGE: that is, imaged with Stain-Free™ technology. This study presents a protocol of image analysis for electrophoresis gels that allows the quantification of unknown proteins using the molecular weight markers as protein standards. Escherichia coli WK6/pHEN6 encoding the bispecific nanobody CH10-12 engineered by the Pasteur Institute of Tunisia was cultured in a bioreactor and induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) at 28°C for 12 hr. Periplasmic proteins extracted by osmotic shock were purified by immobilized metal affinity chromatography (IMAC). Images of the SDS-PAGE gels were analyzed using ImageJ, and the lane profiles were obtained in grayscale and uncalibrated optical density. Protein load and peak area were linearly correlated, and optimal image processing was then performed by background subtraction using the rolling ball algorithm with radius size 250 pixels. No brightness and contrast adjustment was applied. The production of the nanobody CH10-12 was obtained through a fed-batch strategy and quantified using the band of 50 kDa in the marker as reference for 750 ng of recombinant protein. The molecular weight marker was used as a sole protein standard for protein quantification in SDS-PAGE gel images.

Authors: Susana María Alonso Villela, Hazar Kraïem, Balkiss Bouhaouala‐Zahar, Carine Bideaux, César Arturo Aceves Lara, Luc Fillaudeau

Date Published: 1st Jun 2020

Publication Type: Journal

Abstract (Expand)

In the pharmaceutical industry, nanobodies show promising properties for its application in serotherapy targeting the highly diffusible scorpion toxins. The production of recombinant nanobodies in Escherichia coli has been widely studied in shake flask cultures in rich medium. However, there are no upstream bioprocess studies of nanobody production in defined minimal medium and the effect of the induction temperature on the production kinetics. In this work, the effect of the temperature during the expression of the chimeric bispecific nanobody CH10-12 form, showing high scorpion antivenom potential, was studied in bioreactor cultures of E. coli. High biomass concentrations (25 g cdw/L) were achieved in fed-batch mode, and the expression of the CH10-12 nanobody was induced at temperatures 28, 29, 30, 33, and 37°C with a constant glucose feed. For the bispecific form NbF12-10, the induction was performed at 29°C. Biomass and carbon dioxide yields were reported for each culture phase, and the maintenance coefficient was obtained for each strain. Nanobody production in the CH10-12 strain was higher at low temperatures (lower than 30°C) and declined with the increase of the temperature. At 29°C, the CH10-12, NbF12-10, and WK6 strains were compared. Strains CH10-12 and NbF12-10 had a productivity of 0.052 and 0.021 mg/L/h of nanobody, respectively, after 13 h of induction. The specific productivity of the nanobodies was modeled as a function of the induction temperature and the specific growth rates. Experimental results confirm that low temperatures increase the productivity of the nanobody. Key points • Nanobodies with scorpion antivenom activity produced using two recombinant strains. • Nanobodies production was achieved in fed-batch cultures at different induction temperatures. • Low induction temperatures result in high volumetric productivities of the nanobody CH10-12.

Authors: Susana María Alonso Villela, Hazar Ghezal-Kraïem, Balkiss Bouhaouala-Zahar, Carine Bideaux, César Arturo Aceves Lara, Luc Fillaudeau

Date Published: 1st Feb 2021

Publication Type: Journal

Powered by
(v.1.16.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH
IBISBA is a pan-European research infrastructure that is currently funded by the EU Horizon 2020 projects
IBISBA 1.0 (grant agreement number 730976) and PREP-IBISBA (grant agreement number 871118).
Registering data or other knowledge assets on this platform is the sole responsibility of Users.
IBISBA cannot be held responsible for misuse or misappropriation of data and assets belonging to a Third Party..